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ABSTRACT
Grocery product recognition techniques are emerging in the re-
tail sector and are used to provide automatic checkout counters,
reduce self-checkout fraud, and support inventory management.
However, recognizing grocery products using machine learning
models is challenging due to the vast number of products, their sim-
ilarities, and changes in appearance. To address these challenges,
more complex models are created by adding additional modalities,
such as text from product packages. But these complex models
pose additional challenges in terms of model interpretability. Ma-
chine learning experts and system developers need tools and tech-
niques conveying interpretations to enable the evaluation and im-
provement of multimodal production recognition models.

In this work, we propose thus an approach to provide local and
global explanations that allow us to assess multimodal models for
product recognition. We evaluate this approach on a large fine-
grained grocery product dataset captured from a real-world envi-
ronment. To assess the utility of our approach, experiments are
conducted for three types of multimodal models.

The results show that our approach provides fine-grained local
explanations while being able to aggregate those into global expla-
nations for each type of product. In addition, we observe a dispar-
ity between different multimodal models, in what type of features
they learn andwhat modality eachmodel focuses on.This provides
valuable insight to further improve the accuracy and robustness of
multimodal product recognition models for grocery product recog-
nition.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
• Human-centered computing → Human computer interac-
tion (HCI).

KEYWORDS
Multimodal classification, Explainable AI, Grocery product recog-
nition, LIME, Fine-grained recognition, Optical character recogni-
tion
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1 INTRODUCTION
Multimodal models are used in a variety of application domains,
from sentiment analysis to product recognition. In the retail sec-
tor, multimodal models are increasingly used to automatically rec-
ognize grocery products. These models embedded in checkout sys-
tems can improve customer flow in stores, improve customer expe-
rience, and reduce labour costs and store losses. Product recogni-
tion is, however, a challenging task for Machine Learning (ML)-
based solutions due to imbalanced datasets with a vast number
of categories, continuous updates of new grocery products, and
recognition of different products with only subtle details that dif-
ferentiate them.

But these multimodal models are generally complex and diffi-
cult to visualize and interact with. Understanding their behaviour,
limitations, and internal interactions are key for performing debug-
ging and evaluation before deployment; this understanding is also
crucial for trust calibration, acceptance, and use of such models
and the support systems that include them [22].

This work presents an explanatory approach to help ML experts
of multimodal models for grocery product recognition to debug
and assess their models during development. Our approach builds
on existing Explainable AI (XAI) techniques, particularly Local In-
terpretable Model-agnostic Explanations (LIME) [29] for local ex-
planations and NormLIME [2] for global explanations.

We evaluate our approach using a product recognition dataset
collected from a real-world environment. We first build multiple
multimodal models using images from 256 products and optical
character reading (OCR) text extracted from their packages. Then,
we create multimodal local and global explanations using LIME
and NormLIME. An explanation prototype software is then built
to support the analysis under local and global explanations. We
then present the experiments carried out, and finally, we discuss
various design choices and overall lessons learned. We carry out
our investigations in an industrial setting with domain experts in
grocery product recognition.

In summary, the main contributions of this paper are (1) an ex-
planation approach to assess and evaluate multimodal models that
includes solutions for aggregating local explanations from image
and textual data into global explanations, (2) a demonstration of
the utility of the approach by comparing three multimodal fusion

https://orcid.org/0000-0001-8880-7965
https://orcid.org/0000-0003-2900-9335
https://orcid.org/0000-0003-0274-9026
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Multimodal KDD 2023, August 07, 2023, Long Beach, CA Pettersson, et al.

models, and (3) lessons learned and design choices for the imple-
mentation and experiments.

2 BACKGROUND AND RELATEDWORK
2.1 Recognition of Grocery Products
Existing techniques for automatically recognizing grocery prod-
ucts are mainly based on image-based classifications. Fine-grained
image recognition focuses on differentiating between hard-to-dis-
tinguish or similar types of products. The authors in [44] catego-
rize fine-grained image recognition into three main paradigms: (1)
finding key parts in an image and merging the local feature vec-
tor with a global vector representation; (2) learning better feature
representation by high-order feature interaction or novel loss func-
tions; (3) use of auxiliary data sources. Multimodal classification is
part of the last paradigm, using a combination of data from differ-
ent modalities to improve recognition performance. Multimodal
classification has been explored extensively in recent years; see
surveys [6, 8, 37]. In retail, multimodal classification is common
in e-commerce applications, see, e.g., [13, 47, 49], where product
images combined with textual metadata are used to create more
accurate models.

Indeed, recent progress in OCR has enabled extracting textual el-
ements from product packages. The combination of text elements
from the product packages with the respective image allows for
more accurate and reliable recognition of products using multi-
modal classifiers [5, 28]. This strategy has been listed as an impor-
tant research direction to improve the fine-grained recognition of
grocery products in two recent surveys [33, 45]. In addition, OCR
can be used in document classification [4], product leaflet classifi-
cation [19] and package identification [3] in logistics.

2.2 Explainable AI and Explanation Methods
AI and ML-based systems are increasingly found in multiple ap-
plication areas. Given their potential individual and social impact,
these systems need to be designed to allow user control and over-
sight, and avoid the so-called “black-box” problem [26, 29, 31].This
can be achieved by including design aspects that support under-
standability and transparency. From a technological perspective, it
is not straightforward to know what transparency means in these
cases or how to achieve it. Still, current research suggests using in-
terpretable ML-models and XAI methods. Consequently, there are
now many different approaches to interpretable ML and XAI; see,
for example, reviews in [7, 10, 16].

Lipton and Silva et al. [23, 36] differentiate between models that
address transparency (how the model works) and post-hoc expla-
nations (what else the model can tell) [23, 36]. The former refers
to interpretable models that facilitate understanding of the mech-
anism by which the model works [23]. This can be achieved at var-
ious levels, at the level of the entire model (e.g., simulatability), at
the level of individual components (e.g., parameters and decompos-
ability), or at the level of the training algorithm (algorithmic trans-
parency) [23]. Meanwhile, post-hoc explanations provide helpful
information without addressing the model’s inner workings [23,
36]. This is achieved through explanations by example, natural lan-
guage explanations, or factual explanations, e.g., [24, 29]. One of
the advantages of post-hoc explanations is that interpretations are

provided after-the-fact without sacrificing predictive performance
[23]. It is also common to distinguish between global and local (or
instance-level) explanations, roughly equivalent to the former in-
terpretable models and post-hoc explanations.

2.3 LIME and Global Explanations Methods
Among the variety of XAI and post-hoc explanationmethods, LIME
[29] is one of the most commonly used ones. LIME is a model-
agnostic post-hoc method that explains the predictions of any clas-
sifier by building local linear models around the predictions of a
considered opaque model. LIME (and its variations) can be clas-
sified as both an explanation method by simplification, a type of
feature importance method, or a local explanation method [7, 39].
Other post-hoc explanation methods are, e.g., SHAP [24], Grad-
CAM [35], SmoothGrad [38], Integrated Gradients [40].

Relevant to our case, when classifying images, LIME creates a
set of perturbed instances by dividing the input image into inter-
pretable components (contiguous superpixels); each perturbed in-
stance is then run through the model to get a probability value [7].
After that, a simple linear model learns from this dataset, which
is locally weighted. Finally, LIME shows the superpixels with the
highest positive weights as an explanation [7].

In addition to providing local interpretations, LIME has been
used for building global explanations; see extensions in, for in-
stance, SP-LIME [29], global explanation with anchors [30], GALE
[41], G-LIME [21] and NormLIME [2]. Regarding the explainabil-
ity of multimodal models, DIME [25] is a method for fine-grained
interpretation of multimodal models by resolving the model into
unimodal contributions and multimodal interactions before gener-
ating visual explanations for each of them.

3 PROPOSED APPROACH
We present an approach to provide local and global explanations
for multimodal product recognition models. First, we describe how
an image of a product and extracted OCR are combined to visual-
ize local explanations (Section 3.1). Then we aggregate local expla-
nations, create a global explanation for each type of product and
discuss the novel parts of our approach (Section 3.2).

3.1 Local Explanation of Multimodal Product
Recognition Models

The overview of our local explanation approach for multimodal
product recognition models is presented in Figure 1. We consider
product recognition models with an image and a text modality in
which the text has been extracted from the product using OCR.The
result of the reading is the textual elements of the product and its
corresponding bounding boxes. To classify the image and textual
data, we use a dual-stream architecture where the image and text
data are passed through separate models, and the embedding from
these is then combined using a multimodal fusion technique.

We use a local surrogate model to create explanations for each
individual sample. These explanations are based on the concept of
features. A feature of the text modality in our work is a text el-
ement from the OCR reading. For example, if the OCR has read
three texts, this gives three textual features. The features of the im-
age modality are based on superpixels. A superpixel is a region of
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Figure 1: Proposed approach to extract and visualize multimodal local explanations. Samples with image and OCR text on
product packages are fitted to a linear surrogate model using LIME. Resulting feature importances from the local surrogate
model are then visualized into for the image and text modality. A multimodal visualization is then aggregated by adding the
importance of each modality.

pixels with similar visual attributes. Our local surrogate model is
trained by creating samples that randomly remove features from
the original sample. The multimodal predictions from these per-
turbed samples are then fitted to a linear surrogate model to obtain
local explanations.

From the local explanations, we combine the product with the
OCR texts into a multimodal visualization image. We do this by
first creating a blended overlayed heatmap over the original prod-
uct image for each modality. These are constructed by coloring
each image superpixel by its feature importance from the local sur-
rogate model. For the text modality, we color it by text feature im-
portance at the bounding box location for the OCR text entry. The
multimodal visualization image is then constructed bymerging the
image and text visualization images (see Figure 1). In our work, we
use LIME for creating local explanations; however, any method us-
ing local surrogate models can be used within this approach.

3.2 Global Explanation of Multimodal Product
Recognition Models

Using local explanations from feature importance explanationmeth-
ods, such as LIME, can indicate the model’s behavior for particular
samples. However, the appearance of the products differs signifi-
cantly depending, for instance, on the orientation of the product.
Given this large variability, local explanations are insufficient to as-
sess the overall model behavior, capabilities, and limitations; there-
fore, global explanations are necessary.

Our approach to generating global explanations from local ex-
planations is described in Figure 2. For each sample, we first calcu-
late all the top local explanations from both modalities with their
respective metadata. To create global image explanations, we first
calculate the embeddings of each local image feature (superpixel).
We then perform class-wise clustering of the embeddings. Grocery
products can be of many shapes and different types of appearance,
as described above; hence, it is not known how many clusters to
expect. Therefore, we use HDBSCAN [9] as a clustering method,
which can give an arbitrary number of clusters based on the char-
acteristics of the embeddings.The features of the text explanations
are represented as strings; therefore, we use a simple technique for
global text explanations. We match the text features using the Lev-
enshtein distance metric, which measures how many characters
differ between two strings. With this metric, we can accept mis-
spellings, which OCR readings are prone to have.

To value which of the clusters are the most important for a
class, we need to calculate the global importance score of the clus-
ters. However, it is not possible to compare local explanations due
to the different feature importance scales for each sample. There-
fore, we apply NormLIME [2], a technique to give clusters a global
relative importance score compared to other clusters. With these
global importance values, we can extract the image superpixels
and OCR readings that are most important for a product. We se-
lect NormLIME due to its simplicity and performance to provide
more faithful explanations compared to LIME [21]. Other similar
techniques are LIME-SP [29], Averaged-Importance [41] and Ho-
mogeneity [41].
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Figure 2: Overview of our approach to extract global multimodal features for image and text. We match and cluster local
features froma feature importance explanationmethod, such as LIME, and calculate the top features fromeachmodality using
NormLIME. Results from local and global features are then combined and presented in a multimodal explanation prototype
software.

Although generating local and global explanations as an end-to-
end solution is possible, our approach combines local and global
explanations for different purposes. First, local explanations can
be used by engineers to develop and debug multimodal models.
Global explanations, in turn, can be employed for model verifica-
tion before model deployment. Finally, global explanations can be
used to discuss results and challenges for different stakeholders in
the retail domain.

Our approach is inspired by the global explanation part of G-
LIME [21]. We extend and adapt their solution to make it more
robust and easy to use, considering the challenges of the industrial
case. First, we extend the approach to multimodal data while also

providing multimodal visualization. Second, we identify (see Sec-
tion 4.3) the importance of using image embeddings from super-
vised training, update the clustering method to address our classi-
fication task, identify that language models are unable to discrim-
inatory embeddings for individual OCR texts and propose Leven-
shtein matching as a solution. Finally, we utilize an explanation
prototype software for fast and accurate model evaluation (see Sec-
tion 4.4).

4 EXPERIMENTAL SETUP
In this section, we describe the experimental setup for the approach
with the dataset in Section 4.1, our parameter selection for the
explanation method in Section 4.2, the details of our multimodal
model selection in Section 4.3, and, finally, our explanation proto-
type software used in the experiments in Section 4.4.
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4.1 Dataset
A significant number of grocery products have similar appearances.
For example, different products that have various flavors, a lactose
or non-lactose version of a product, similar or identical sides (e.g.
the list of ingredients side), and the same type of product with dif-
ferent weights, volumes, or sizes. In these cases, it is very challeng-
ing for an image model to classify the products correctly. Combin-
ing image data with OCR readings into a multimodal model makes
discrimination between products easier than an image-only model.

(a) (b)

(c) (d)

Figure 3: Example of challenging cases fromourmultimodal
fine-grained recognition dataset where products have the
same appearance and are only differentiable by text (ingre-
dients side (a), meat packages (b)), have a lactose and non-
lactose product variant (c), and have the same type of prod-
uct with different weight (d).

Therefore, we have collected a product recognition dataset that
includes all the above challenges. An example of some of the chal-
lenging image samples is presented in Figure 3. There exist several
other datasets for grocery product recognition, see for example,
[11, 14, 15, 27, 43]. However, none of these includes all of the chal-
lenges mentioned above, in particular, the multimodal and fine-
grained aspects.

Our dataset is extracted from an automated scanning solution
used in a large grocery store, which captures the image and its
class using a barcode recognition system. We focus on the follow-
ing six categories that contain many similar products; chocolate,
dairy, meat, milk/cream, mushroom, and toppings. The dataset has
256 classes, each with 100 training and 50 validation samples. Each
sample consists of an RGB image with a resolution of 2592x1944
and a text data file containing the OCR reading with its position
within the image for the sample. The OCR text of the products is
extracted using the Google Vision API1. The mean number of OCR
reads for each sample in the training set is 27.2 words, with a stan-
dard deviation of 21.7. The mean number of OCR reads for the val-
idation set is 25.7 words, with a standard deviation of 20.8.

1https://cloud.google.com/vision

4.2 Explanation Method
We have opted to use LIME as our feature importance explanation
method.Themotivation for this is two-fold; first, multimodal prod-
uct recognition models are complex, often with different architec-
tures in each stream. The model-agnostic property of LIME makes
it easy to evaluate different types of multimodal product recogni-
tion models. Second, we want to be able to generate explanations
for our entire validation dataset. Although LIME still requires a sig-
nificant amount of computation power, it is still possible to extract
local explanations of our validation dataset using a computer with
a high-end graphics card.

Our LIME implementation with multimodal data is based on
the implementation from the original authors of LIME2. However,
we replace Quickshift [42] with Simple Linear Iterative Cluster-
ing (SLIC) [1] to generate superpixels. As in [34], we clearly see
that SLIC extracts more relevant superpixels than Quickshift. We
explored several values for the number of extracted SLIC super-
pixels and concluded that 100 superpixels captured distinguishing
product attributes consistently. Also, we select 2000 as the sam-
pling number for LIME. Larger sampling sizes did not give any
significant changes for multimodal explanations. The perturbation
of samples is done by removing random OCR text entries and su-
perpixels from the multimodal input data.

We visualize our local explanations by blending an overlay im-
age of the feature importance value with the original sample image.
We do this by first normalizing the feature importance values from
the image and text modality jointly between 0−1.0. We then create
a visualization image for each modality, where the image super-
pixels and the bounding boxes of the text features are colored. To
easily distinguish the importance of features, we use the JET col-
ormap for colorization. The multimodal explanation image is then
constructed by aggregating the contributions from both the image
and text visualization. Distinguishing between image and text fea-
ture contributions in multimodal visualization is intuitive due to
the distinctive colorization of bounding boxes of text features. In
addition, we also suppress visualization features that have a nor-
malized feature value of less than 0.2, giving explanation images
that are clearer and easier to interpret.

We extract the embeddings from each class’s top local image
explanations separately for our global explanations approach. We
first train a ResNet50 [17] (see Section 4.3) image classifier with our
training dataset. Then we use that model to extract embeddings
from each sample’s top 3 local image explanations. The image em-
beddings are then clustered using the HDBSCAN algorithm. Sim-
ilarly to the work presented in [21], we evaluated image embed-
dings from a ResNet50 pre-trained on ImageNet to extract global
explanations. However, this yielded image embeddings fromwhich
we could not find good cluster parameters. For global text explana-
tions, we match local text explanations using a Levenshtein dis-
tance metric with a match ratio of 0.75. The motivation for this
is to allow for the matching of noisy OCR readings. It is notewor-
thy that we also explored using DistilBERT features from a trained
model, but the embeddings from individual OCR words (with mis-
spellings) could not give separable clusters using HDBSCAN.

2https://github.com/marcotcr/lime
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4.3 Model Selection and Training
We select the baseline models ResNet50 and DistilBERT [32] as
the image respective text model backbone of our multimodal mod-
els. For our experiments, we evaluate three different multimodal
fusion techniques to validate our proposed approach. Feature Con-
catenation [37] is a technique in which the embeddings of each
modality are concatenated into a single vector, which is then fed to
a neural network. In our experiments, we use the embeddings from
the last layer of the image and text model. Similarly, Score Fusion
[37] merges the predictions of themodels and passes them to a one-
layer neural network. These two techniques are the two standard
approaches to performing multimodal fusion. The third selected
mulitmodal fusion technique is EmbraceNet [12]. EmbraceNet uses
the embedding from each modality and passes through a one-layer
neural network that gives eachmodality the same dimension.These
representations are then combined by probabilistically selecting
features from each modality during training, guiding it to learn
from both modalities. In addition to the three selected multimodal
models, we also consider more sophisticated multimodal models
from [18, 46, 48]. However, our evaluation of these models has
shown that they present worse classification accuracy compared
to the best unimodal models on our dataset. While it is interesting
to evaluate the reason for this, it is beyond the scope of this paper.

Our multimodal recognition models use pre-trained image and
text models from PyTorch3 (ResNet50) and Huggingface4 (Distil-
BERT).We use standard data augmentation techniques duringmodel
training, such as vertical/horizontal flipping and image rotation.
We use the OCR text as input to the models for the text modality.
The image is scaled to a size of 256x256 before being processed by
the model, while the text input is set to a maximum length of 256
words. In rare cases where the OCR input exceeds 256 words, the
remaining words are removed. All models are trained using the
ADAM optimizer with a learning rate 2𝑒−5 and a weight decay of
1𝑒−4. In addition, we use a batch size of 16 and cross-entropy as
the loss function.

4.4 Explanation Prototype Software
We generate all the data for the local and global explanations and
save it to a database. Then a web-based Gradio5 application writ-
ten in Python reads all the information from the database and loads
the data into the application. This design choice gives the applica-
tion instant responsiveness, and it is possible to browse between
classes and explanations easily. Furthermore, it is also possible to
start several instances to perform side-to-side comparisons of dif-
ferent multimodal product recognition systems.

The GUI is simplistic, with a dropdown menu where class can
be selected and a tab field where either local or global explanations
can be displayed. In the global view, the top global features can be
displayed for either the image or text modality. A histogram show-
ing the modality importance ratio is also available. This histogram
indicates which type of modality that is the most important for
the recognition model when making a prediction. For local expla-
nation, each sample within the class can be explored. We provide

3https://pytorch.org/vision/stable/models.html
4https://huggingface.co/docs/transformers/model_doc/distilbert
5https://gradio.app/

two different views. In the Single Sample view, the image, text, and
multimodal explanation of the selected sample are displayed. In
this view, the miss-classifications are also displayed that highlight
feature importance for both the current class and the predicted
class. This makes it possible to interpret the parts of the image
that are important for the wrongly predicted sample. The Gallery
collects all samples for a class and presents them in a grid. With
this view, the user can evaluate whether the class gives consistent
explanations throughout the samples. A screenshot of the explana-
tion prototype software can be seen in Figure 2.

5 EXPERIMENTS
In this section, we validate our approach by performing experi-
ments for local explanations in Section 5.1 and global explanations
in Section 5.2.

5.1 Local Explanations
First, we train our image, text, and multimodal models separately
and evaluate them on our validation set. The results are presented
in Table 1.

Models Accuracy
DistilBERT 87.1%
ResNet50 93.2%
Score Fusion 93.4%
Feature Concatenation 96.5%
EmbraceNet 96.5%

Table 1: Classification results on the validation set for the
unimodal classification models ResNet50 and DistilBERT
and the multimodal models Score Fusion, Feature Concate-
nation, and EmbraceNet.

From the results, we see that both Feature Concatenation and
EmbraceNet are able to utilize both textual and image information
and provide a significant improvement in classification accuracy
by 3.3 percentage points compared to the ResNet50 image model.
In contrast, we see that Score Fusion is only capable of increasing
the classification accuracy by 0.2 percentage points.

(a) (b) (c)

Figure 4: Example ofmultimodal visualizations fromour ap-
proach with samples dominated by text (a) and image (b) ex-
planations, and a sample combining image/text (c) explana-
tions.

Then we run LIME for our multimodal models to calculate the
local explanations on the validation set. We use a JET colormap to
visualize the feature importance as described in Section 4.2. After
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Original Feature Conc. Score Fusion EmbraceNet

Figure 5: Multimodal local explanations from LIME dif-
fers significantly betweenmultimodal classificationmodels.
This is illustrated with three exemplary products.

the explanations have been calculated, we extensively evaluate the
result utilizing our explanation prototype software. We observe a
great variety of explanations depending on the class and samples.
Also, we note that the highlighted explanations reflect discrimina-
tory image parts (distinct colors/textures) and OCR text (product-
specific words). Figure 4 illustrates three of the main cases that
utilize either image, image, and textual information, or textual in-
formation when making its prediction.

We also compare each of the multimodal models with our expla-
nation prototype software. We can see that the explanations differ
significantly between samples. An example of this is shown in Fig-
ure 5 where EmbraceNet bases its prediction on the product text,
while Feature Concatenation and Score Fusion focus on the charac-
teristics of the image and text. In general, whenwe have performed
our extensive evaluation, EmbraceNet and Score Fusion combine
information from both the image and text modality to a greater
extent compared to Feature Concatenation.

In our explanation prototype software, we also summarize the
modality feature importance ratio between image and text with
our multimodal models. This is done by summarizing how much
the feature importance is based on the image and text, respectively,
for each sample. This is then aggregated into a histogram for all
samples. In Figure 6, we present the image/text feature for the mul-
timodal models. The results confirm our qualitative observations
that EmbraceNet and Score Fusion comparison places a lot more
attention on the text modality than Feature Concatenation.

5.2 Global Explanations
We then analyze the results of our global approach using our ex-
planation prototype software for the threemultimodal models.The
top global features are selected for each modality and visualized
with an image of the top score local explanation with additional
metadata, such as the number of local samples and different text
spellings for the text modality.We can observe that themultimodal
models consistently extract discriminatory product attributes as
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Figure 6: Histogram of image/text feature importance ra-
tio for Score Fusion (a), Feature Concatenation (b) and Em-
braceNet (c)

the top global explanations. These are often specific parts of the
product with distinctive colors or textures. For global text explana-
tions, discriminatory words are mostly extracted, such as the name
of ameat package. Also, we see that some specific ingredients, such
as the amount of sodium and saturated fat in a package, are impor-
tant. Figure 7 illustrates an example of the top global explanations
for image and text, respectively. We argue that this will increase
the level of understanding of our trained multimodal models and
in turn, increase trust (even if there are trade-offs, explanations
from AI systems have shown to increase trust in AI, see e.g. [20]).
Furthermore, they also show that they are not overfitted to specific
image patterns or noisy OCR readings.

To validate whether our global explanations have a significant
effect on the classification accuracy of the multimodal models, we
perform a classification experiment that evaluates the effect of our
global explanations. Utilizing the deletion metric described in [21],
we first select the image samples that include either the top 3 im-
ages or text global features for each class. Then we classify these
samples by the original sample, removal of the top global features,
and finally, removal of a random feature. We perform the multi-
modal classification of each modality separately. In samples that
contain global features for both image and text, we run both of
these cases separately with one modality adjusting its input. If a
sample contains more than one global feature for a modality, we
remove the input from all of them. The removal of text features
is done by removing the OCR text from the text input, while the
image features blacken out the superpixels in the input image. We
remove a random non-global text feature from the input data in
the random deletion case. For the image modality, we blacken out
a nearby image region by the size of the top image feature super-
pixel. The result of our experiment can be seen in Table 2.

Modality Samples Fusion model
Accuracy

No deletion Top expl. Random expl.
deletion deletion

Image
16774 Feature Concat. 99.97% 77.59% 99.33%
16398 Score Fusion 99.97% 93.42% 99.20%
16951 EmbraceNet 99.41% 85.78% 99.06%

Text
9453 Feature Concat. 99.97% 96.01% 99.46%
8053 Score Fusion 99.99% 83.89% 98.99%
10396 EmbraceNet 99.77% 93.18% 99.44%

Table 2: Multimodal classification with samples containing
global features, without global features and with samples
deleting non-top features.
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(a) Global image explanation for a class (left) with its supporting
local image explanations from different samples (right)

(b) Global text explanation withmetadata includingmost common
text, different types of spellings, and number of explanation sam-
ples.

Figure 7: Example of top global image (a) and text (b) expla-
nations

We are unable to compare the multimodal model side-by-side
because different samples contain global explanations. However,
we can draw some general conclusions. First, we can see that the re-
moval of globally important features significantly reduces the accu-
racy of the model. In comparison, removing random features only
slightly affects the accuracy, at most reducing accuracy by one per-
centage point. Second, the multimodal models are affected differ-
ently by removing different modalities. This is also in line with our
results from the analysis of local explanations in Section 5.1.

6 CONCLUDING DISCUSSION
We present and demonstrate an approach for interpreting multi-
modal product recognition models using image and OCR text, em-
powering ML experts and system developers to create more accu-
rate and robust models. Our approach supports the extraction of
local explanations for a particular sample while also generating
global explanations for each type of product.

We evaluate the suggested approach with a fine-grained gro-
cery store dataset. We perform experiments with three different
multimodal models, which validate that our approach extracts con-
vincing local and global explanations for both the image and text
modality.The experiments also show thatmultimodal product recog-
nition models focus on different parts and modalities of the mul-
timodal data. Furthermore, we validate that the robustness of the
models differs when removing global features from the image or
text modality.

Besides being a great utility for debugging different multimodal
models, the approach can also be used to analyze different learning

techniques or hyperparameters for a specific multimodal model. A
limitation of our work is the computational power needed to ex-
tract global explanations for large datasets, yet, this can be signifi-
cantly reduced by selecting specific classes with low accuracy.

Our approach is not limited to LIME andworks for other feature-
importance explanation methods. Furthermore, it is not limited to
the recognition of grocery products. Any recognition system that
uses images and OCR text can benefit from our proposals, for ex-
ample, in document classification and package identification in lo-
gistics.
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